The Lucas Triangle Revisited
نویسنده
چکیده
منابع مشابه
Bertrand’s Paradox Revisited: More Lessons about that Ambiguous Word, Random
The Bertrand paradox question is: “Consider a unit-radius circle for which the length of a side of an inscribed equilateral triangle equals 3 . Determine the probability that the length of a ‘random’ chord of a unit-radius circle has length greater than 3 .” Bertrand derived three different ‘correct’ answers, the correctness depending on interpretation of the word, random. Here we employ geomet...
متن کاملA Lucas Triangle Primality Criterion Dual to That of Mann-shanks
subject to the initial conditions A(l, 0) = 1, A(l, 1) ='2, with 4(n, /c) = 0 for & < 0 or k > n. This array has been called a Lucas triangle by Feinberg [1], because rising diagonals sum to give the Lucas numbers 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, ..., in contrast to the rising diagonals in the standard Pascal triangle where rising diagonals sum to give the Fibonacci numbers 1, 1, ...
متن کاملA Discrete Convolution on the Generalized Hosoya Triangle
The generalized Hosoya triangle is an arrangement of numbers where each entry is a product of two generalized Fibonacci numbers. We define a discrete convolution 1 C based on the entries of the generalized Hosoya triangle. We use C and generating functions to prove that the sum of every k-th entry in the n-th row or diagonal of generalized Hosoya triangle, beginning on the left with the first e...
متن کاملNew Sums Identities In Weighted Catalan Triangle With The Powers Of Generalized Fibonacci And Lucas Numbers
In this paper, we consider a generalized Catalan triangle de ned by km n 2n n k for positive integer m: Then we compute the weighted half binomial sums with the certain powers of generalized Fibonacci and Lucas numbers of the form n X k=0 2n n+ k km n X tk; where Xn either generalized Fibonacci or Lucas numbers, t and r are integers for 1 m 6: After we describe a general methodology to show how...
متن کاملConic Construction of a Triangle From Its Incenter, Nine-point Center, and a Vertex
We construct a triangle given its incenter, nine-point center and a vertex by locating the circumcenter as an intersection of two rectangular hyperbolas. Some special configurations leading to solutions constructible with ruler and compass are studied. The related problem of construction of a triangle given its circumcenter, incenter, and one vertex is revisited, and it is established that such...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002